Transcriptomic and physiological analyses of Medicago sativa L. roots in response to lead stress
نویسندگان
چکیده
Lead (Pb) is one of the nonessential and toxic metals that threaten the environment and human health. Medicago sativa L. is a legume with high salt tolerance and high biomass production. It is not only a globally important forage crop but is also an ideal plant for phytoremediation. However, the biological and molecular mechanisms that respond to heavy metals are still not well defined in M. sativa. In this study, de novo and strand-specific RNA-sequencing was performed to identify genes involved in the Pb stress response in M. sativa roots. A total of 415,350 unigenes were obtained from the assembled cDNA libraries, among which 5,416 were identified as significantly differentially expressed genes (DEGs) (false discovery rate < 0.005) between cDNA libraries from control and Pb-treated plants. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs showed they mainly clustered with terms associated with binding, transport, membranes, and the pathways related to signal and energy metabolism. Moreover, a number of candidate genes included antioxidant enzymes, metal transporters, and transcription factors involved in heavy metal response were upregulated under Pb stress. Quantitative real-time PCR(qRT-PCR) validation of the expression patterns of 10 randomly selected candidate DEGs were consistent with the transcriptome analysis results. Thus, this study offers new information towards the investigation of biological changes and molecular mechanisms related to Pb stress response in plants.
منابع مشابه
Growth and some physiological characteristics of alfalfa (Medicago sativa L.) in response to lead stress and Glomus intraradices symbiosis
Lead is a nonessential element that has a negative effect on plant growth and development. Plant symbiosis with arbuscular mycorrhizal fungi (AMF) in soils contaminated with heavy metals can affect growth of plant, nutrition and tolerance against heavy metals. In this study, the effect arbuscular mycorrhizal fungi Glomus intraradices on the growth, photosynthetic pigments, protein content, prol...
متن کاملThe investigation of some biochemical and physiological responses of alfalfa (Medicago sativa L.) cultivars from Iran to NaCl salinity stress. Seyed Afshin Hosseini-Boldaji1, Babak Babakhani2, Reza Hassan-Sajedi3
In order to investigate the effects of salt stress on biochemical and physiological responses of two cultivars of alfalfa (Medicago sativa L.) namely, Diabolourde and Yazdi, chlorophyll content, growth parameters, and proline contents of roots and shoots, reducing sugars contents of roots and shoots, and membrane injuries of the plant samples were subjected to 0, 100, 150, and 200 mM NaCl treat...
متن کاملBiochemical and Physiological Responses of Alfalfa (Medicago sativa L.) Cultivars to Osmotic Stress
In order to investigate the effects of water stress on total phenolics content, antioxidant power, β-glucosidase activity and stomatal properties of alfalfa, a factorial experiment based on randomized complete block design was carried out in 1-Lit pots containing half strength Hoagland culture medium using two cultivars of alfalfa at four osmotic pressures including 0 (control), -0.5, -1.0 and ...
متن کاملImprovement of some physiological responses of alfalfa (Medicago sativa L.) under in vitro salt stress using Triadimefon
This study was carried out to investigation the possibility of using Triadimefon (TRD) in order to decrease the adverse effects of salt stress on Medicago plant. Triadimefon is a member of Triazol compounds which enhances stress tolerance through physiological processes. Two cultivars of Medicago sitiva including Hamedani and Yazdi were used in this study. Plants were treated with 1, 2 and 4 mg...
متن کاملComparative Proteomic Analysis Reveals Differential Root Proteins in Medicago sativa and Medicago truncatula in Response to Salt Stress
Salt stress is an important abiotic stress that causes decreased crop yields. Root growth and plant activities are affected by salt stress through the actions of specific genes that help roots adapt to adverse environmental conditions. For a more comprehensive understanding of proteins affected by salinity, we used two-dimensional gel electrophoresis and mass spectrometry to characterize the pr...
متن کامل